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Abstract. This paper presents a new method for solving global optimization problems. We use
a local technique based on the notion of discrete gradients for finding a cone of descent

directions and then we use a global cutting angle algorithm for finding global minimum within
the intersection of the cone and the feasible region. We present results of numerical experi-
ments with well-known test problems and with the so-called cluster function. These results

confirm that the proposed algorithms allows one to find a global minimizer or at least a deep
local minimizer of a function with a huge amount of shallow local minima.
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1. Introduction

Numerical methods for global optimization are very time consuming and
could not be applied for high-dimensional non-convex optimization prob-
lems. This is the reason why many researches try to use various combina-
tions of global and local search techniques. Strategies based on different
combinations of global and local searches can be used. In particular, the
following two types of such combinations are used:

1) A local technique is used in order to obtain a stationary point (local
minimum). Then a global technique should be applied in order to
escape from the obtained stationary point and find a new point
which can be used as an initial guess for the new round of local
search; (see e.g., [8, 11, 19, 28]).

2) Points obtained by a global technique are used as initial points for a
local search (see e.g., [21]).

Descent methods of local optimization are based on the following idea.
Applying a local approximation of an objective function at the point in
hand, we need to find a descent direction and then the step-size along this
direction. Local approximation of the first order is given by the gradient
or by some of its substitutes. The size of the descent can be found by
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different methods, in particular by global one-dimensional minimization.
This approach is good enough for local minimization of functions with a
few stationary points, however it does not work properly for functions
with many shallow local minima. Indeed, for such a function we are
mainly interested in a deep enough local minimum, and a local search usu-
ally entraps at a shallow local minimizer or even at a stationary point
which is not a local minimizer.
Some methods for global optimization are fast enough in small dimen-

sions. This observation gives rise to a completely new combination of local
and global technique which is discussed in this paper. Namely, we suggest
to apply a global technique for the search for the descent in dimensions
higher than one, using a local approximation of the function at the point
at hand. This approach is beneficial for minimization of non-smooth functions
with many shallow local minima since it allows one to find a deep enough
local minimizer and even a global minimizer. It can be also used for minimi-
zation of smooth functions.
For application of this approach we need to have a good local approxi-

mation of an objective function and a fast enough (in small dimensions)
method for a global search. Since we are mainly interested in the minimiza-
tion of non-smooth function, we consider a special approximation of Clarke
subdifferential and quasidifferential given by discrete gradients [3–5] for a
local approximation of the objective function. For a global search we use
the cutting angle method [1, 2, 6, 12]). We propose the algorithm for mini-
mization that is based on the use of discrete gradients and the cutting angle
method.
The proposed algorithm was applied to two classes of global optimiza-

tion problems. One of these classes consists of well-known test problems
with smooth objective functions (see [23]). The other class consists of prob-
lems with the objective function of the form

fðx1; . . . ; xkÞ ¼
Xm

i¼1
min

1O jO k
jjxj � aijjp xj 2 R

n; j ¼ 1; . . . ; k; ð1Þ

where A ¼ faigmi21 is a finite set of points. Note that f depends on n � k vari-
ables. The function f in Equation (1) is called a cluster function (see, [9]
and references therein). Such a function is used in cluster analysis. Many
location problems can also be reduced to the minimization of a cluster
function (see, for example, [15]). It is well-known that the cluster function
has very many shallow local minima. We suggest a special method for the
minimization of a cluster function which allows one to find a good initial
point. In order to find such an initial point we need to solve an optimiza-
tion problem of dimension n with non-smooth and non-convex objective
function. We used the proposed algorithm for both the search of an initial
point and the minimization of a cluster function.
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The results of numerical experiments confirm that the proposed algo-
rithm can be successfully applied for solving many problems of global opti-
mization.
The structure of this paper is as follows. In Section 2 we briefly recall

the notion of discrete gradients which we use for a local approximation of
a function and also local discrete gradient method and global cutting angle
method. Section 3 provides a description of the main algorithm which we
propose. In Section 4 we discuss the results of numerical experiments with
well-known test problems. Section 5 contains an algorithm for the minimi-
zation of cluster functions. Results of numerical experiments with the mini-
mization of a cluster function are presented in Section 6. Section 7
contains concluding remarks.

2. Preliminaries

In this section we recall some known methods for local approximation and
global optimization which will be used in this paper.

2.1. THE DISCRETE GRADIENT METHOD

In this subsection we will briefly describe a local approximation of a locally
Lipschitz function by means of discrete gradients. We also describe a
known algorithm for calculation of descent directions based on discrete
gradients and the discrete gradient method for the local minimization. We
start with the definition of the discrete gradient.

2.1.1. Definition of the discrete gradient

Let u be a locally Lipschitz continuous function defined on R
n. Let

S1 ¼ fg 2 R
n : jjgjj ¼ 1g;G ¼ fe 2 R

n : e ¼ ðe1; . . . ; enÞ; jejj ¼ 1;

j ¼ 1; . . . ; ng;
P ¼ fzðkÞ : zðkÞ 2 R

1; zðkÞ > 0; k > 0; k�1zðkÞ ! 0; k! 0g;
Iðg; aÞ ¼ fi 2 f1; . . . ; ng : jgijPag;

where a 2 ð0; n�1=2� is a fixed number.
Here S1 is the unit sphere, G is the set of vertices of the unit hypercube

in R
n and P is the set of univariate positive infinitesimal functions.

We define operators Hj
i : Rn ! R

n for i ¼ 1; . . . ; n; j ¼ 0; . . . ; n by the
formula

Hj
i g ¼

ðg1; . . . ; gj; 0; . . . ; 0Þ if j < i,
ðg1; . . . ; gi�1; 0; giþ1; . . . ; gj; 0; . . . ; 0Þ if jPi.

�
ð2Þ

We can see that

LOCAL OPTIMIZATION METHOD 163



Hj
i g�Hj�1

i g ¼ ð0; . . . ; 0; gj; 0; . . . ; 0Þ if j ¼ 1; . . . ; n; j 6¼ i;
0 if j ¼ i.

�
ð3Þ

Let eðbÞ ¼ ðbe1;b2e2; . . . ; bnenÞ, where b 2 ð0; 1�. For x 2 R
n we consider

vectors

x j
i ¼ x j

i ðg; e; z; k;bÞ ¼ xþ kg� zðkÞHj
i eðbÞ; ð4Þ

where g 2 S1, e 2 G, i 2 Iðg; aÞ, z 2 P, k > 0, j ¼ 0; . . . ; n, j 6¼ i.
It follows from Equation (3) that

xj�1i � xj
i ¼

ð0; . . . ;0; zðkÞejðbÞ;0; . . . ;0Þ if j ¼ 1; . . . ; n; j 6¼ i,
0 if j ¼ i.

�
ð5Þ

It is clear that H0
i g ¼ 0 and x0i ðg; e; z; k;bÞ ¼ xþ kg for all i 2 Iðg; aÞ.

DEFINITION 1. (see [5]) The discrete gradient of the function u at the
point x 2 R

n is the vector Ciðx; g; e; z; k; bÞ ¼ ðCi
1; . . . ;Ci

nÞ 2 R
n, g 2 S1,

i 2 Iðg; aÞ, with the following coordinates:

Ci
j ¼ ½zðkÞejðbÞ�

�1 uðxj�1i ðg; e; z; k; bÞÞ � uðx j
i ðg; e; z; k; bÞÞ

h i
;

j ¼ 1; . . . ; n; j 6¼ i;

Ci
i ¼ zðkgiÞ�1 uðxni ðg; e; z; k;bÞÞ � uðxÞ �

Xn

j¼1;j6¼i
Ci
jðkgi � zðkÞejðbÞÞ

" #
:

A more detailed description of the discrete gradient and examples can be
found in [3]. The discrete gradient is an approximation to a subgradient of
a locally Lipschitz function [5].

REMARK 1. It follows from Definition 1 that for the calculation of the
discrete gradient Ciðx; g; e; z; k;bÞ, i 2 Iðg; aÞ we define a sequence of points

x0i ; . . . ; xi�1i ;xiþ1i ; . . . ;xni :

For the calculation of the discrete gradient it is sufficient to evaluate the
function u at each point of this sequence.

REMARK 2. The discrete gradient is defined with respect to a given direc-
tion g 2 S1. We can see that for the calculation of one discrete gradient we
have to calculate ðnþ 1Þ values of the function u: at the point x and at the
points x j

i ðg; e; z; k; bÞ, j ¼ 0; . . . ; n, j 6¼ i. For the calculation of another dis-
crete gradient at the same point with respect to any other direction g1 2 S1
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we have to calculate this function n times, because we have already calcu-
lated u at the point x.

2.1.2. The method

We consider the following unconstrained minimization problem:

minimize uðxÞ subject to x 2 R
n; ð6Þ

where the function u is assumed to be semismooth (for the definition of
semismooth functions see [22]). We consider the following algorithm for
solving this problem. An important step in this algorithm is the calculation
of a descent direction of the objective function u. Therefore first, we
describe an algorithm for the computation of this descent direction.
Let z 2 P, k > 0, b 2 ð0; 1�, the number c 2 ð0; 1Þ and a small enough

number d > 0 be given.

ALGORITHM 1. An algorithm for the computation of the descent direc-
tion.

Step 1. Choose any g1 2 S1, e 2 G, i 2 Iðg1; aÞ and compute a discrete gra-
dient v1 ¼ Ciðx; g1; e; z; k;bÞ. Set D1ðxÞ ¼ fv1g and k ¼ 1.

Step 2. Calculate the vector jjwkjj ¼ minfjjwjj : w 2 DkðxÞg. If
jjwkjjOd; ð7Þ
then stop. Otherwise go to Step 3.

Step 3. Calculate the search direction by gkþ1 ¼ �jjwkjj�1wk.
Step 4. If

uðxþ kgkþ1Þ � uðxÞO� ckjjwkjj; ð8Þ
then stop. Otherwise go to Step 5.

Step 5. Calculate a discrete gradient

vkþ1 ¼ Ciðx; gkþ1; e; z; k;bÞ; i 2 Iðgkþ1; aÞ;
construct the set Dkþ1ðxÞ ¼ cofDkðxÞ

S
fvkþ1gg, set k ¼ kþ 1 and

go to Step 2.

Algorithm 1 contains some steps which deserve an explanation. In Step 1
we calculate the first discrete gradient. The distance between the convex
hull of all calculated discrete gradients and the origin is calculated in Step
2. If this distance is less than the tolerance d > 0 then we accept the point
x as an approximate stationary point (Step 2), otherwise we calculate the
search direction in Step 3. In Step 4 we check whether this direction is
a descent direction. If it is we stop and the descent direction has been
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calculated, otherwise we calculate another discrete gradient with respect to
this direction in Step 5 and add it to the set Dk.
It is proved that Algorithm 1 is terminating (see [3, 4]).
Let sequences dk > 0, zk 2 P, kk > 0, bk 2 ð0; 1�, dk ! þ0, zk ! þ0,

kk ! þ0, bk ! þ0, k! þ1 and numbers c1 2 ð0; 1Þ, c2 2 ð0; c1� be given.

ALGORITHM 2. Discrete gradient method

Step 1. Choose any starting point x0 2 R
n and set k ¼ 0.

Step 2. Set s ¼ 0 and xks ¼ xk.
Step 3. Apply Algorithm 1 for the calculation of the descent direction at

x ¼ xks , d ¼ dk, z ¼ zk, k ¼ kk, b ¼ bk, c ¼ c1. This algorithm ter-
minates after a finite number of iterations m > 0. As a result we
get the set Dmðxks Þ and an element vks such that

jjvks jj ¼ minfjjvjj:v 2 Dmðxks Þg:
Furthermore either jjvks jjOdk or for the search direction gks ¼
�jjvks jj

�1vks

uðxks þ kkg
k
s Þ � uðxks ÞO� c1kkjjvks jj: ð9Þ

Step 4. If

jjvks jjOdk ð10Þ

then set xkþ1 ¼ xks , k ¼ kþ 1 and go to Step 2. Otherwise go to
Step 5.

Step 5. Construct the following iteration xksþ1 ¼ xks þ rsg
k
s , where rs is

defined as follows

rs ¼ argmaxfrP0:uðxks þ rgks Þ � uðxks ÞO� c2rjjvks jjg:

Step 6. Set s ¼ sþ 1 and go to Step 3.

For the point x0 2 R
n we consider the set Mðx0Þ ¼ fx 2 R

n:uðxÞO
uðx0Þg.

THEOREM 1. ([3]) Assume that the set Mðx0Þ is bounded for starting
points x0 2 R

n. Then every accumulation point of fxkg belongs to the set
X0 ¼ fx 2 R

n:0 2 @uðxÞg.

2.2. CUTTING ANGLE METHOD

In this subsection we consider the following problem of global optimization:

minimize fðxÞ subject to x 2 S; ð11Þ
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where the objective function f is an increasing positively homogeneous
(IPH) of degree one and the set S is the unit simplex in R

n:

S ¼ x 2 R
n
þ:
Xn

i¼1
xi ¼ 1

( )
:

Here R
n
þ ¼ fx 2 R

n : xiP0; i ¼ 1; . . . ; ng.
Recall that a function f defined on R

n
þ is called increasing if xPy implies

fðxÞPfðyÞ; the function f is positively homogeneous of degree one if
fðkxÞ ¼ kfðxÞ for all x 2 R

n
þ and k > 0.

For a given vector l 2 R
n
þ, l 6¼ 0 we put IðlÞ ¼ fi ¼ 1; . . . ; n : li > 0g. We

use the following notation for c 2 R and l 2 R
n
þ:

ðc=lÞi ¼
c=li if i 2 IðlÞ,
0 if i j2 IðlÞ:

�

Note that an IPH function is non-negative on R
n
þ. We assume that

fðxÞ > 0 for all x 2 S. It follows from positiveness of f that IðlÞ ¼ IðxÞ for
all x 2 S and l ¼ fðxÞ=x. Let ek be the k-th orthant vector, k ¼ 1; . . . ; n.
Now we describe the cutting angle method for solving problem (11).

ALGORITHM 3. The cutting angle method.

Step 0. (Initialization) Take points xk 2 S, k ¼ 1; . . . ;m, where mPn, xk ¼ ek

for k ¼ 1; . . . ; n and xkj > 0 for k ¼ nþ 1; . . . ;m, j ¼ 1; . . . ; n. Let
lk ¼ fðxkÞ=xk, k ¼ 1; . . . ;m. Define the function hm:

hmðxÞ ¼ max
kOm

min
i2IðlkÞ

lki xi ¼ max max
kOn

lkkxk; max
nþ1OkOm

min
i2IðlkÞ

lki xi

� �
ð12Þ

and set j ¼ m.
Step 1. Find a solution x� of the problem

minimize hjðxÞ subject to x 2 S: ð13Þ
Step 2. Set j ¼ jþ 1 and x j ¼ x�.
Step 3. Compute l j ¼ fðx jÞ=x j, define the function

hjðxÞ ¼ maxfhj�1ðxÞ; min
i2Iðl jÞ

l ji xig � max
kOj

min
i2IðlkÞ

l ji xi ð14Þ

and go to Step 1.

A more detailed description of Algorithm 3 with necessary explanations
can be found in [6, 7, 26]. This algorithm can be considered as a version of
the cutting angle method ([1, 2]). The cutting angle method provides a
sequence of lower estimates for the global minimum f� of Equation (11)
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with an IPH objective function, which converges to f�. Theoretically this sequence
can be used for establishment of a stopping criterion (see [26] for details). Let

kj ¼ min
x2S

hjðxÞ ¼ hjðxjþ1Þ ð15Þ

be the value of the problem (13). kj is a lower estimate of the global mini-
mum f�. It is known (see, for example, [26]), that kj is an increasing
sequence and kj ! f� as j! þ1.
The cutting angle method constructs the sequence ffðx jÞg, which is not

necessarily decreasing: it is possible that fðxjþ1Þ > fðx jÞ for some j.
The most difficult and time-consuming part of the cutting angle method

is solving the auxiliary problem (13). An algorithm for the solution of this
problem was proposed in [6]. Some modifications of this algorithm (and
corresponding modifications of the cutting angle method) are discussed in
[7] and [12].
Only one value of the objective function is used at each iteration of the

cutting angle method. Some modifications of this method require to evalu-
ate a few values of the objective function at each iteration.

2.2.1. Global minimization of Lipschitz functions

Now we consider the following problem of global optimization:

minimize fðxÞ subject to x 2 S; ð16Þ
where the function f is Lipschitz continuous on S. This problem can be
reduced to the global minimization of a certain IPH function over S. The
following theorem has been established in [27] (see [26]).

THEOREM 2. Let f : S! R be a Lipschitz function and let

L ¼ sup
x;y2S;x 6¼y

jfðxÞ � fðyÞj
jjx� yjj1

ð17Þ

be the least Lipschitz constant of f in jj � jj1-norm, where jjxjj1 ¼
Pn

i¼1 jxij.
Consider a positively homogeneous function

uðxÞ ¼ jjxjj f ð x
jjxjjÞ if x 6¼ 0,

0 if x ¼ 0

�

defined on R
n
þ. If minx2S fðxÞP2L then u is an IPH function and

uðxÞ ¼ fðxÞ for all x 2 S.
Let

cP2L�min
x2S

fðxÞ; ð18Þ

where L is defined by Equation (17). Let f1ðxÞ ¼ fðxÞ þ c. Theorem 2
implies that the function f1 can be extended to an IPH function u. Since
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f1ðxÞ ¼ uðxÞ for all x 2 S the global minimization of u over S is equivalent
to the following global optimization problem:

minimize f1ðxÞ subject to x 2 S ð19Þ
and consequently the cutting angle method can be applied to solve this
problem. On the other hand the functions f and f1 have the same minimiz-
ers on the simplex S and if the constant c is known the problem (16) can
be solved by the cutting angle method. In order to estimate c we need to
know an upper estimation of the Lipschitz constant L and a lower estima-
tion of the desired global minimum of the function f. We will assume that
c is a sufficiently large number. However it should be noted that for
increasing values of c the cutting angle method works less efficiently.

3. The Main Algorithm

In this section we consider the following global optimization problem:

minimize fðxÞ subject to x 2 D ð20Þ
where

D ¼ fx 2 R
n : aiOxiObi; i ¼ 1; . . . ; ng:

We propose the following algorithm for solving problem (20).
Let sequences dk > 0, zk 2 P, kk > 0, bk 2 ð0; 1�, dk ! þ0, zk ! þ0,

kk ! þ0, bk ! þ0, k! þ1, numbers c1 2 ð0; 1Þ, c2 2 ð0; c1� and c3 > 0
be given.

ALGORITHM 4. The discrete gradient method with global search.

Step 1. Choose any starting point x0 2 D and set k ¼ 0.
Step 2. Set s ¼ 0 and xks ¼ xk.
Step 3. Apply Algorithm 1 for the calculation of the descent direction at

x ¼ xks , d ¼ dk, z ¼ zk, k ¼ kk, b ¼ bk, c ¼ c1. This algorithm ter-
minates after a finite number of iterations m > 0. As a result we
get the set Dmðxks Þ and an element vks such that

jjvks jj ¼ minfjjvjj : v 2 Dmðxks Þg:

Furthermore either jjvks jjOdk or for the search direction gks ¼
�jjvks jj

�1vks

fðxks þ kkg
k
s Þ � fðxks ÞO� c1kkjjvks jj: ð21Þ

Step 4. If

jjvks jjOdk ð22Þ
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and m > 2 then set xksþ1 ¼ xks and go to Step 7. If Equation (22)
satisfies and mO2 then set xkþ1 ¼ xks , k ¼ kþ 1 and go to Step 2.
Otherwise go to Step 5.

Step 5. Construct the following iteration xksþ1 ¼ xks þ rsg
k
s , where rs is

defined as follows

rs ¼ argmaxfrP0 : xks þ rgks 2 D; fðxks þ rgks Þ � fðxks ÞO� c2rjjvks jjg:
Step 6. If m ¼ 1 then set s ¼ sþ 1 and go to Step 3. Otherwise go to

Step 7.
Step 7. Calculate two discrete gradients w1, w2 2 Dmðxks Þ such that

hw1;w2i
jjw1jjjjw2jj ¼ min

hv1; v2i
jjv1jjjjv2jj : v

1; v2 2 Dmðxks Þ; jjv1jj; jjv2jj 6¼ 0

� �

Step 8. Set y1 ¼ xksþ1, g1 ¼ �w1, g2 ¼ �w2 and IðgtÞ ¼ fi 2 f1; . . . ; ng :
gti 6¼ 0g, t ¼ 1; 2. For t ¼ 1; 2 calculate the maximum step-sizes
along the directions gt; t ¼ 1; 2:

s1t ¼ min
ai � y1i

gti
; i 2 IðgtÞ; gti < 0

� �
;

s2t ¼ min
bi � y1i

gti
; i 2 IðgtÞ; gti > 0

� �
;

st ¼ minfs1t ; s2t g; t ¼ 1; 2:

Set �s ¼ maxfs1; s2g.
Step 9. Calculate the points y2 and y3 as follows:

y2 ¼ y1 þ s1g
1; y3 ¼ y1 þ s2g

2

and construct the following set:

S¼ fv 2 R
n : v¼ a1y

1þ a2y
2þ a3y

3; a1þ a2þ a3 ¼ 1; a1;a2;a3P0g:
Step 10. Apply the cutting angle method to solve the following global opti-

mization problem:

minimize fðxÞ subject to x 2 S: ð23Þ
Step 11. Let x� 2 S be a solution to the problem (23). If

fðx�Þ � fðxksþ1ÞO� c3�s
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then set xksþ1 ¼ x�, s ¼ sþ 1 and go to Step 3. Otherwise go to
Step 12.

Step 12. If (21) satisfies then set s ¼ sþ 1 and go to Step 3. Otherwise set
xkþ1 ¼ xksþ1, k ¼ kþ 1 and go to Step 2.

Now we give some explanations to Algorithm 4. In Step 1 we select any
starting point and then apply the discrete gradient method with the starting
values of the parameters in the definition of the discrete gradient. In Step 3
Algorithm 1 is applied to calculate a descent direction or to determine that
the current point xks is an approximate stationary point. If we calculate a
descent direction in Step 3, that is the condition (21) is satisfied then we
carry out a line search along this direction at the point xks in Step 5 and
calculate a new point xksþ1. It should be noted that the step-size rs in Step
5 is computed approximately using Armijo type line search. If the number
of the calculated discrete gradients is more than two (this allows us to con-
struct two-dimensional set for a global search) we carry out a global search
in Steps 7–11.
If xks is the approximate stationary point and the number of the calcu-

lated discrete gradients at this point is more than two then we carry out
global search in Steps 7–11 trying to escape from xks , otherwise we change
the parameters for the calculation of the discrete gradient to get a better
approximation to the subdifferential.
Two-dimensional global search is carried out in Steps 7–11. In Step 7 we

calculate two discrete gradients from the set of discrete gradients D
k

m with
largest angle between them. These two discrete gradients give us two direc-
tions g1 and g2 (Step 8), respectively. Then we calculate two points (y2 and
y3 in Step 9) where the rays from the current point y1 ¼ xksþ1 meet the
boundary of the feasible region. Using these two points and the point y1

we construct the set S for the global search by the cutting angle method
(Steps 9 and 10).
The problem (23) can be rewritten as follows:

minimize wðaÞ subject to a 2 S ð24Þ
where

S ¼ fa ¼ ða1; a2; a3Þ:a1 þ a2 þ a3 ¼ 1; a1; a2; a3P0g
and

wða1; a2; a3Þ ¼ fða1y1 þ a2y
2 þ a3y

3Þ:
It follows from the results stated in Subsection 2.2 that the problem (24)

can be reduced to the global minimization of a certain IPH function over the
unit simplex and the cutting angle method can be applied for its solution.
Step 11 checks whether the global search achieves the guaranteed

decrease of the objective function. If it is we do not change the parameters
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of the discrete gradients in Step 3. If both the line search and global search
do not achieve the guaranteed decrease of the objective we change the
parameters of the discrete gradient in Step 3 to get a better approximation
to the subdifferential.
It is clear that all accumulation points of the sequence generated by

Algorithm 4 are stationary points of problem (20).

4. Results of Numerical Experiments

In this section we report the results of numerical experiments for some
known test problems with smooth objective functions involved. The follow-
ing test problems of global optimization were used in numerical experi-
ments: Ackleys function (A1) , Branin function (B1), Camel function (C1),
two Levy functions (L2 and L3), Rastrigin function (R1) and three Shubert
functions (Sh1, Sh2 and Sh3). We consider the problem of global minimi-
zation of these functions subject to box-constraints. The description of
functions and the corresponding box-constraints can be found, for exam-
ple, in [23].
In numerical experiments 50 initial points were randomly generated

from the feasible region. Thus 50 results were obtained by the proposed
algorithm starting from 50 different initial points. In all problems we
used two-dimensional search by the cutting angle method. At each global
search the number of iterations by the cutting angle method was
restricted to 100.
The codes of algorithms have been written in Fortran 95 and numerical

experiments have been carried out in VPAC’s (Victorian Partnership for
Advanced Computing), supercomputer in Melbourne using one processor
with 833 MHz.
Results of numerical experiments are presented in Table 1. The following

notations are used in this table. In column ‘‘known gl. min’’ we present the
known global minimum of the corresponding problem. In columns ‘‘mean’’
and ‘‘st. dev.’’ mean values and standard deviation of all results obtained
by the discrete gradient and DG+CAM methods are presented, respec-
tively.
Results presented in Table 1 show that in all problems except Levy func-

tion No. 2, the DG+CAM method improved the results obtained by the
discrete gradient method. In many cases such an improvement is signifi-
cant. In particular, DG+CAM method achieved much better results for
Ackleys function ðn ¼ 2Þ, Branin function, Camel function, Levy function
L3 ðn ¼ 4; 5Þ, Rastrigin function ðn ¼ 2; 5Þ and all Shubert functions.
Values of standard deviations for DG and DG+CAM methods show
that the latter method allows one to get better and more ‘‘stable’’ results.
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Moreover, in the case of Branin, Camel, Levy function L2 ðn ¼ 10; 20Þ,
Levy function L3 ðn ¼ 5Þ and Shubert function Sh3 the mean value of all
results obtained by DG+CAM method is quite close to the value of the
global minimum.
In numerical experiments we restricted the number of iterations gener-

ated by the cutting angle method by 100. Otherwise CPU time required by
the cutting angle method could be large which makes the proposed algo-
rithm ineffective. The results confirm that DG+CAM requires in average
two times more CPU time than the discrete gradient method. Thus we can
say that DG+CAM is a local optimization method with better global
search properties.

5. Minimization of Cluster Functions

In this section we consider the application of the proposed algorithm for
solving cluster analysis problem.
Assume that we are given a finite points set A in n-dimensional space

R
n : A ¼ fa1; . . . ; amg; ai 2 R

n. Then the problem of finding centers
x1; . . . ;xk of k clusters in this set is reduced to the following optimization
problem:

minimize fkðx1; . . . ; xkÞ subject to x j 2 R
n; j ¼ 1; . . . ; k ð25Þ

where

Table 1. Results of numerical experiments

Prob. n Known

gl. min.

Discrete gradient DG+CAM

fbest Mean st. dev. fbest mean st.dev.

A1 2 0.00 0.2801 4.5869 2.3187 0.0000 1.8253 1.4097

A1 10 0.00 3.9491 3.9491 0.0000 2.398 3.8179 0.4027

A1 30 0.00 3.9296 3.9477 0.0082 2.1155 3.6924 0.5969

B1 2 0.00 0.0000 2.3792 3.2117 0.0000 0.1240 0.5413

C1 2 )1.0316 )1.0316 )0.7868 0.3778 )1.0316 )0.9990 0.1616

L2 2 0.00 0.0000 0.8708 1.5442 0.0000 0.8708 1.5442

L2 10 0.00 0.0000 0.0187 0.0746 0.0000 0.0187 0.0746

L2 20 0.00 0.0000 0.0933 0.0770 0.0000 0.0933 0.0770

L3 4 )21.5024 )21.5024 )4.3183 15.6069 )21.5024 )18.3553 9.6436

L3 5 )11.5044 )11.5044 )6.7422 4.2938 )11.5044 )11.2685 0.8825

R1 2 0.00 0.0000 13.1931 11.2383 0.0000 4.9151 9.3581

R1 5 0.00 7.9597 23.1427 9.7087 0.9950 14.9641 8.4591

R1 10 0.00 36.8740 40.6341 3.5355 24.8740 38.3855 4.6715

R1 20 0.00 79.5966 82.9795 2.3442 30.8437 81.2681 8.4698

R1 30 0.00 119.3949 127.99131 5.41521 9.9496 98.9386 41.6100

Sh1 2 )186.7309 )186.7309 )93.1254 73.5074 )186.7309 )113.0273 26.6690

Sh2 2 )186.7309 )186.7309 )81.6387 67.8182 )186.7309 )118.6854 17.0499

Sh3 2 )24.0625 )24.0625 )16.5940 4.6777 )24.0625 )21.5355 3.8992
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fkðx1; . . . ;xkÞ ¼
Xm

i¼1
min

1O jO k
jjx j � aijjp ð26Þ

and jj � jjp is the p-norm in R
n:

jjxjjp ¼
Xn

l¼1
jxljp

 !1=p

; x 2 R
n:

Solution �x j 2 R
n, j=1,. . ., k of Equation (25) can be considered as centers

of clusters.
The function fk in Equation (26) is called a cluster function (see [9] and

references therein). The cluster function is a typical example of the so-
called sum–min function, that is the function of the form

Fðx1; . . . ;xkÞ ¼
X

ai2A
minðu1ðx1; aiÞ;u2ðx2; aiÞ; . . . ;ukðxk; aiÞÞ;

where x7!ui (x, a) is a convex function defined on R
mði ¼ 1; . . . ; k; a 2 AÞ.

Another example of sum–min function can be found in [14].
The problem (25) is a problem of non-smooth and non-convex optimiza-

tion. The number of variables n in this problem can be very large in many
practical applications including the problem of the cluster analysis. There-
fore the global optimization techniques as a rule fail to solve this problem.
We propose the following algorithm for solving problem (25). This algo-

rithm is some modification of the algorithm proposed in [10] (see, also, [9]).

ALGORITHM 5. An algorithm for minimization of a cluster function.

Step 1. (Initialization). Select a starting point x0 2 R
n and solve the fol-

lowing minimization problem:

minimize f1ðxÞ subject to x 2 R
n: ð27Þ

Let x1� 2 R
n be a solution to this problem. Set q=1.

Step 2. (Computation of the next cluster center). Select a starting point
y0 2 R

n and solve the following minimization problem:

minimize �f qðyÞ subject to y 2 R
n; ð28Þ

where

�fqðyÞ ¼
Xm

i¼1
minfkx1� � aikp; . . . ; kxq� � aikp; ky� aikpg: ð29Þ

Step 3. (Refinement of all cluster centers). Let y� be a solution to problem
(28). Take xqþ1;0 ¼ ðx1�; . . . ;xq�; y�Þ as a new starting point and
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solve the problem (25) for k ¼ qþ 1. Let xqþ1;� be a solution to the
problem (25) for k ¼ qþ 1.

Step 4. (Stopping criterion). If q < k� 1 then set q ¼ qþ 1 and go to Step
2. Otherwise stop.

Algorithm 5 contains some steps which need to be explained. In Step 1
the center of the first cluster is calculated. The problem (27) is a convex
programming problem. In Step 2 we calculate a center of the next ðqþ 1Þ-
st cluster, assuming the previous q cluster centers to be known and fixed. It
should be noted that the number of variables in problem (28) is n which is
substantially less than if we calculate all cluster centers simultaneously. In
Step 3 the refinement of all qþ 1 cluster centers is carried out. One can
expect that the starting point xqþ1;0 calculated in Step 2 is not far from the
solution to the problem (28). Such an approach allows one to significantly
reduce the computational time for solving problem (25).
Algorithm 4 is applied to solve problems (25) and (28). Let

�ai ¼ minfa j
i ; j ¼ 1; . . . ;mg;

and

�bi ¼ maxfa j
i ; j ¼ 1; . . . ;mg:

Then the problems (28) and (25) can be replaced by the following prob-
lems, respectively:

minimize �f qðyÞ subject to y 2 D ð30Þ

minimize fkðx1; . . . ; xkÞ subject to x j 2 D; j ¼ 1; . . . ; k; ð31Þ

where

D ¼ fx 2 R
n : �aiOxiO �bi; i ¼ 1; . . . ; ng:

6. Results of Numerical Experiments with Cluster Functions

We tested the proposed algorithm for solving the cluster analysis problem
using real-world datasets. Three test sets which have been used for testing
of the proposed algorithm are: (i) 1060 and (ii) 3068 points in the plane,
taken from the TSP-LIB data base ([25]), (iii) 19-dimensional image seg-
mentation data ([13]).
In numerical experiments we consider Euclidean norm, that is p ¼ 2. In

this case the clustering problem is also known as minimum sum-of-
squares-clustering.
The results of numerical experiments are presented in Table 2. In this

table we report best known value for the global minimum from [16, 18], as
well as results obtained by three most effective heuristic algorithms for
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finding of minimum of sum-of-squares clustering problems: k�m; j�mþ
and Variable Neighborhood Search (VNS) algorithms (see [16–18]). We present
the average value of results obtained by these three algorithms by 10 restarts.
The % error E reported in the table are calculated as

E ¼ ð
�f� foptÞ
fopt

� 100;

where �f and fopt denote the solution found by the algorithm and the best
known solution. Negative % errors mean that the algorithm has improved
the best known solution.
Since in the proposed algorithm the starting points are updated by the

algorithm itself we report only one value obtained by this algorithm.
Results presented in Table 2 show that in 6 cases the proposed algorithm

improved the best known solution. In many cases this algorithm calculated

Table 2. Results for the clustering problem.

Datasets Number of

clusters

Best known value K–M J–M+ VNS DG+CAM

TSPLIB1060 10 1.75484 � 109 0.03 0.19 0.04 0.00

20 7.91794 � 108 3.96 0.04 0.83 0.00

30 4.81251 � 108 10.51 1.82 0.42 0.53

50 2.55509 � 108 16.58 3.84 1.70 0.70

TSPLIB3038 2 0.31688 � 1010 0.00 0.00 0.00 0.00

3 0.21763 � 1010 1.55 1.29 1.37 0.00

4 0.14790 � 1010 0.03 0.00 0.00 0.00

5 0.11982 � 1010 0.12 0.11 0.10 0.00

6 0.96918 � 109 1.22 1.98 0.01 0.00

7 0.83966 � 109 1.65 1.48 0.73 1.73

8 0.73475 � 109 1.90 1.48 0.62 0.00

9 0.64477 � 109 1.47 0.99 0.11 0.00

10 0.56025 � 109 2.44 1.81 0.06 0.00

20 0.26681 � 109 3.16 2.60 0.09 0.14

30 0.17557 � 109 4.04 2.89 0.91 0.03

40 0.12548 � 109 6.21 3.49 0.93 )0.38
50 0.98400 � 108 6.79 3.51 0.33 0.11

Image seg. 2 0.35606 � 108 0.17 0.00 0.00 )0.01
3 0.27416 � 108 1.38 0.37 0.46 )0.02
4 0.19456 � 108 25.32 0.00 0.00 )0.03
5 0.17143 � 108 23.48 0.81 0.10 )0.03
6 0.15209 � 108 16.41 2.47 2.87 0.78

7 0.13404 � 108 12.49 5.39 2.53 0.49

8 0.12030 � 108 10.94 6.29 0.16 0.55

9 0.10784 � 108 13.58 6.92 0.32 0.61

10 0.97952 � 107 15.83 3.65 0.18 1.71

20 0.51283 � 107 34.63 3.46 0.97 0.35

30 0.35076 � 107 44.68 5.62 0.40 )0.02
40 0.27398 � 107 53.43 4.90 0.43 0.73

50 0.22249 � 107 58.51 4.32 0.35 0.44
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the best known solution and in all other cases its results are comparable
with results obtained by other algorithms. Results from this table confirm
the proposed algorithm is quite powerful algorithm for solving clustering
problems in large datasets.

7. Conclusion

In this paper the algorithm for solving global optimization problems has
been proposed. This algorithm is based on the discrete gradient method
where line search procedure is partly replaced by the multidimensional glo-
bal search. The global search is carried out by the cutting angle method.
Results of numerical experiments are presented which demonstrate that this
method allows one to improve results obtained by the discrete gradient
method.
The proposed algorithm has been applied for solving the cluster analysis

problems in three datasets from the literature. The use of the algorithm
allows one in many cases to get best known values for global minimum.
Moreover, in six cases the new best values have been found. In all other
cases the results achieved by the proposed algorithm are better or compa-
rable with the results obtained by other most effective algorithms of the
cluster analysis.
Results of numerical experiments confirm that the proposed algorithm is

effective for finding a good local minimum at least for the problems con-
sidered in this paper.
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